温度表示機能を有するハイドロゲル血管モデル

横田悠樹,細野恵介,丸山央峰,新井史人 名古屋大学大学院工学研究科 マイクロ・ナノ機械理工学専攻

cation of sensor integrated artery model with thin and uniform th

Background & Purpose

Renal artery ablation for treatment of high blood pressure

Possibility of vessel damage due to overheating and insufficient heating of sympathetic nerve

Surgical simulator having temperature sensor is needed.

Requirements for renal artery model having sensor

- Thickness of vessel: 0.6 to 0.7 mm
- · Uniform thickness of vessel
- · Integration of temperature sensor in hydrogel vessel model

Problems on model fabrication

- Molding : Remove the core
- · Dip coating: Form uniform thickness

Fabrication

- 1. Fabrication of mold of vessel model
- 4. Injection of material of vessel model
- 2. Molding to polydimethylsiloxane (PDMS) 5. UV exposure from outside the mold
- 3. Remove vessel mold from PDMS mold
- 6. Remove uncured material and mold

Materials of renal artery model having temp. sensor

PEG-DA 600	PVA 417	DI water	Irgacure1173	50% Chromicolor
40 g	9 g	81 g	2.2 g	2.35 g
Chromicolor (MATSUI SHIKISO CHEMICAL CO.,LTD) changes color at 38 °C reversible				

Relationship between exposure time and thickness

Concept

Circumferential exposure to from uniform thin model

Polymerization of resin from outside gradually

Resin Cúred Resir

Control of thickness by adjusting exposure time

Experiments

Fabrication of a renal artery model

CAD date Artery model

UV exposure time: 120 sec Measurement result:

 Average film thickness: 0.73 mm Standard deviation : 0.04 mm

Renal artery model with thin and uniform thickness was fabricated.

Calibration of temp. with Cr Cr = 0.500R-0.419G-0.081B

 $\frac{c}{1+e^{a(x-d)}}+b$ a = 0.63 c = 35.9545 55 65 Temperature [°C] Error: 1 °C (from 37.5 to 42.5 °C)

Visualization of temp. change from color of artery model

Repeatable color change of artery model was observed.

Artificial artery model having temperature sensor was fabricated.

Conclusions

- Thickness of artery model was controlled from 0.53 to 1.09 mm by adjusting UV exposure time (from 90 to 240 seconds).
- Error of temp. measurement was 1 °C (37.5 degrees to 42.5 °C)

特願2017-195961,丸山央峰,新井史人,臓器モデルと その製造方法および管状弾性部材の製造方法, 出願日2017.10.6

Y. Yokota, K. Hosono, H. Maruyama, F. Arai, Proc. of MHS2017, pp. 109-110, 2017

Contact person: Yuki Yokota E-mail: yokota@biorobotics.mech.nagoya-u.ac.jp, URL: http://www.biorobotics.mech.nagoya-u.ac.jp/ TEL: 052-789-5220, FAX: 052-789-5027

Acknowledgements:

This research was supported by the Cross-ministerial Strategic Innovation Promotion Program (SIP) of the Ministry of Agriculture, Forestry and Fisheries of Japan.