直接外部駆動機構を用いた単一浮遊細胞の機械特性計測

NAGOYA UNIVERSITY

〇杉浦広峻¹, 垣尾翼¹,佐久間臣耶²,Turan Bilal¹,金子真²,新井史人¹ 1: 名古屋大学 2: 大阪大学

浮遊細胞の機械特性計測

Background

floating animal cells(iPS cells, RBC and so on) is needed in bioscience.

For the quantitative evaluation of these cells...

- Target: Small (~20 mm) and floating cells
- Power: nN order

Concept of measurement system

Direct-Outer-Drive(DOD)

- (1) Direct transmission of the displacement and the power from outer actuator
 - → On-chip probe takes over its precision and accuracy over outer actuator
- (2) Driving on-chip probe with only one direction force we want to work
- Any thickness of silicon is available.
- (3) Selectivity of the source of outer driving force
- → Optimal conditions are selected

Fabrication

(i) Packaging of Si and glass layers with mechanical clamp

PZT stage

Experiment

The Young's modulus of MDCK cell was estimated by the deformation of the cell

and the displacement of force sensor(theoretical spring constant: 1.72 nN/μm)

mean: 421 Pa

Conclusion

The Young's modulus of MDCK cell was estimated about 421 Pa by using on-chip cellular measurement

Reference

Measurement of Mechanical Property of Floating Cell Using On-chip Robot with Direct-Outer-Drive Mechanism 3P2-G06, 2014 Robomech 26th

Contact person: Hirotaka Sugiura E-mail: sugiura@biorobotics.mech.nagoya-u.ac.jp, URL: http://www.biorobotics.mech.nagoya-u.ac.jp/ Dept. of Mechanical Science and Engineering, Nagoya University

TEL: +81-52-789-5220, FAX: +81-52-789-5027

Acknowledgements:

This work was partially supported by Scientific Research from Ministry of Education, Culture, Sports, Science and Technology (23106002) and Nissan chemical industries, LTD.

