Rapid injection of fluorescent sensor into a cell by local

mechanical stimulus using optical tweezers

O Hengjun Liu, Hisataka Maruyama, Taisuke Masuda, Fumihito Arai Department of Micro-Nano Systems Engineering, Nagoya University, Japan

n stimulus for accelerating sensor inject

The me	ethods of sen	sor injection	<u>1</u>
Injection Method	Stanporation	Endocytosis	Lipofection
Schematic image	Cantilever Nanoparticle	Nanoparticle	Liposome Nanoparticle
Injection to individual cell	Yes	No	No
Damage to cell	Yes	No	No
Rapid injection	Yes	No	No

Rapid and selective injection of sensor with low damage to cell is required

NAGOYA UNIVERSITY

Injection process

- 1). Preparation of liposome containing single sensor
- Selective adhesion liposome to cell membrane by optically-induced charge control
- 3). Rapid injection of sensor using vibration optical tweezers

Results

Rapid injection of individual sensor by optical tweezers

Conclusions We succeeded to adhere the sensor to a cell selectively through optical control. We also achieved rapid sensor injection (approximately 30 min) into the cell by applying local mechanical stimulus using optical tweezers with amplitude of 4 µm and frequency of 1Hz.

This work has been supported by CREST (Core Research for Evolutional Science and Technology) of JST (Japan. Science and Technology Corporation).

