細胞通過センサを有した集積化マイクロピペットによる

単一細胞回収

〇田代和也1, 益田泰輔1, 新井史人1

1: 名古屋大学

発想: MEMS技術とプーラーを組み合わせてピペット機能に革新を

Background

- ✓ High-precision cancer diagnosis
- ✓ Clarification of Generation, differentiation
- ✓ Evaluation of rare cell

Resent researches found that cell mass is hetero.

So, single-cell analysis is the more resent and highly regarded.

⇒Single-cell isolation/dispensing system is necessary.

Conventional technique

For the high precision celldispensina

One of the reason...

O Fabricate new pipette that has single-cell sensor.

✓ Over sucking of cell.

O Combine sensor and flow contro

 Cell dispensing success rate is not perfect. · It is serious problem in the case of rare-cell.

- Detect the cell by sensor.
- Stop the pump.
- Eject the cell to the well.

Design Capacitance sensor ✓ High precision, high responsibility Can be designed in µm order

Discriminate cell from bubble

Purpose

Effective width of electrode

- √ To reduce dead volume (volume from tip to sensor)
- ✓ Narrow channel
 ✓ Small distance between tip and sensor

(d) Sandblast.

Sensor

(e) Patterning of OFPR. (f) Wet etching by HF.

(g) Sputtering Cr/Au.

(h) Patterning of Cr/Au.

passage detection of cell", 3P2I06, P254,Robomech2014