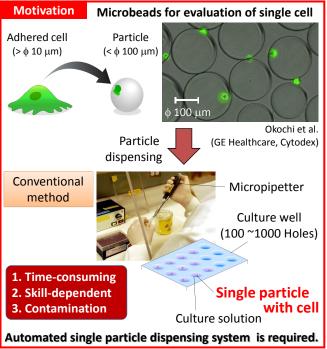
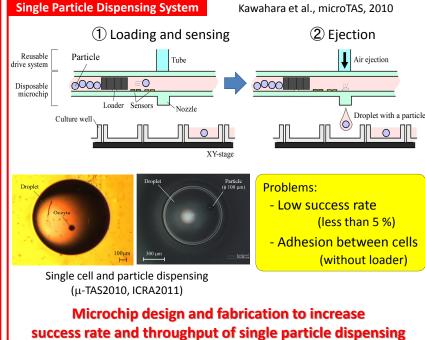
High-Speed Single Cell Dispensing System

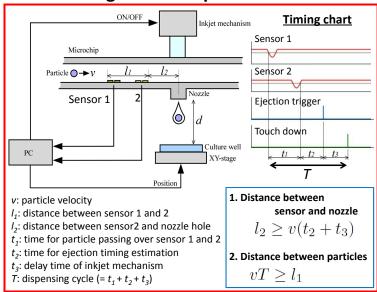
OTomohiro Kawahara¹, Tatsuhiko Hirano¹, Lin Feng¹, Huseyin Uvet¹, Masaya Hagiwara¹, Yoko Yamanishi^{1,2}, and Fumihito Arai^{1,3}


(1. Nagoya University, JAPAN, 2. PRESTO, JST, JAPAN, 3. Seoul National University, KOREA)

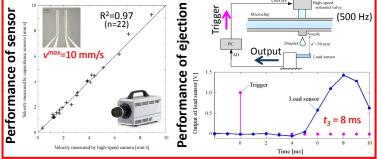
How to realize high-speed and high-accuracy single cell dispensing?

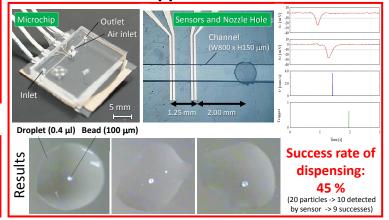

Abstract:

In this paper, we discuss the single cell dispensing system to increase both the speed and the success rate of single cell dispensing. Two pairs of capacitance sensors are placed in a biochip to detect the flow velocity of cells, and the air pressure is applied to eject cells by synchronizing the timing. Then, the system theoretically has a capability to eject 3 cells/sec with maximum flow velocity is 10 mm/sec. Finally, we succeeded in automatic dispensing of single polystyrene bead (=100 μ m) using developed cell ejection system with the success rate of 45 %. Furthermore, we also succeeded in single swine oocyte dispensing by developed system.


Background:

Basic Concept:


How to Design Microchip:


Conclusion & Future Works:

- High-speed single cell dispensing system with disposable microchip.
 - 3 particles/sec throughput (theoretically)
 - 45 % success rate
- Improvement of the success rate and dispensing speed.
- Evaluation of damage of cells caused by loading and ejection.

Preliminary Experiments:

Fabrication and Application:

